Sub-exponential decay of eigenfunctions for some discrete Schrödinger operators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential decay of eigenfunctions of Brown–Ravenhall operators

We prove the exponential decay of eigenfunctions of reductions of Brown– Ravenhall operators to arbitrary irreducible representations of rotation–reflection and permutation symmetry groups under the assumption that the corresponding eigenvalues are below the essential spectrum.

متن کامل

Eigenvalue Asymptotics and Exponential Decay of Eigenfunctions for Schrödinger Operators with Magnetic Fields

We consider the Schrödinger operator with magnetic field, H = ( 1 i ∇−a (x)) + V (x) in R. Assuming that V ≥ 0 and |curla |+ V + 1 is locally in certain reverse Hölder class, we study the eigenvalue asymptotics and exponential decay of eigenfunctions. Introduction Consider the Schrödinger operator with magnetic field H = H( ⇀ a , V ) = ( 1 i ∇−a (x) )2 + V (x) in R, n ≥ 3, (0.1) where i = √ −1,...

متن کامل

Internal Lifshitz tails for discrete Schrödinger operators

We consider random Schrödinger operatorsHω acting on l2(Zd). We adapt the technique of the periodic approximations used in (2003) for the present model to prove that the integrated density of states of Hω has a Lifshitz behavior at the edges of internal spectral gaps if and only if the integrated density of states of a well-chosen periodic operator is nondegenerate at the same edges. A possible...

متن کامل

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Essential spectra and exponential estimates of eigenfunctions of lattice operators of quantum mechanics

This paper is devoted to estimates of the exponential decay of eigenfunctions of difference operators on the lattice Zn which are discrete analogs of the Schrödinger, Dirac and square-root Klein-Gordon operators. Our investigation of the essential spectra and the exponential decay of eigenfunctions of the discrete spectra is based on the calculus of the so-called pseudodifference operators (i.e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Spectral Theory

سال: 2018

ISSN: 1664-039X

DOI: 10.4171/jst/240